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Introduction

Convex composite problem

x∗ = argmin
x∈Rp

1

n

n∑
i=1

(fi (x) + r(x)) (1)

fi (·) is proper, convex and differentiable.

r(·) is the shared convex nonsmooth regularizer.

Figure: Communication network

All agents form an undirected and
connected graph.

fi (·) is privately known by agent i .

Only accessible neighbors can com-
municate along edges.
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Introduction

Each agent has a copy xi . Want: x∗i = x∗j (consensus).

Matrix notations

Xk =

 (xk1)
⊤

...
(xkn)

⊤

 ∈ Rn×p,

∇F(Xk) =

 (∇f1(xk1))
⊤

...
(∇fn(xkn))

⊤

 ∈ Rn×p,

Mixing matrix W = [wij ] ∈ Rn×n is symmetric and encodes the
communication weights.

WX = X iff x1 = x2 = · · · = xn,

−1 < λn(W) ≤ λn−1(W) ≤ · · ·λ2(W) < λ1(W) = 1.
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Introduction

Decentralized Consensus Problem (DCP)

X∗ = argmin
X∈Rn×p

n∑
i=1

fi (xi )︸ ︷︷ ︸
=:F(X)

+
n∑

i=1

r(xi )︸ ︷︷ ︸
=:R(X)

, s.t. (I−W)X = 0, (2)

Consensus, in optimality

(I−W)X∗ = 0 ⇒ X∗ = 1(x∗)⊤

The communication process: X+ = WX.

In agent i ’s perspective,

x+i = wiixi +
∑
j∈Ni

wijxj .
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Communication compression

Compress the transmitted vector in communication, e.g.,

[1.2,−0.1] ⇒ ([1, 0], ∥[1.2,−0.1]∥1)
Q: Why do we compress the communication?
A: The limited communication bandwidth impacts the time spent on
training large models significantly.
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Figure: Per iteration time cost on Resnet18 for SGD, QSGD, and DORE. The
figure is from [LLTY20].
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Compression operator

Unbiased stochastic compression operator Q : Rp → Rp with
bounded variance-to-signal ratio, i.e.

EQ(x) = x,
E∥x−Q(x)∥2 ≤ C∥x∥2.

C ≥ 0 measures the level of compression.

Examples:

p-norm b-bit quantization,

Qp(x) :=
(
∥x∥psign(x)2−(b−1)

)
·
⌊
2b−1|x|
∥x∥p

+ u

⌋
, u ∼ Unif [0, 1]p.

random-k sparsification,
pick k elements randomly and scale for unbiasedness.
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Smooth case: LEAD

Many compression algorithms have been proposed such as QDGD,
QuanTimed-DSGD[RMHP19, RTM+19], Choco-sgd[KSJ19] and
LessBit [KKJ+21].

We propose LEAD [LLW+21] with faster convergence rate and better
convergence complexity.

Consider the equivalent min-max problem

min
X∈Rn×p

max
S∈Rn×p

F(X) + ⟨B
1
2X,S⟩, (3)

where B = I−W
2 .

We apply primal-dual hybrid gradient method (PDHG) in [ZC08].
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Smooth case: LEAD


PDHG :

Xk+1 = argmin
X∈Rn×p

F(X) + ⟨B
1
2X,Sk⟩,

Sk+1 = Sk + λB
1
2Xk+1.

We solve X-subproblem inexactly by two-step gradient descent with
stepsize η. 

inexact PDHG :

Xk+1 = Xk − ηF(Xk)− ηB
1
2Sk ,

Xk+1 = Xk+1 − η∇F(Xk+1)− ηB
1
2Sk ,

Sk+1 = Sk + λB
1
2Xk+1.

Yao Li (MSU) Prox-LEAD IOS2022 9 / 25



Smooth case: LEAD

Switch the order and let D = B
1
2S.

inexact PDHG :

Xk+1 = Xk − η∇F(Xk)− ηDk ,

Dk+1 = Dk +
λ

2
(I−W)Xk+1,

Xk+1 = Xk − η∇F(Xk)− ηDk+1.

(4)

There is only one time communication in D step.

We propose a new compression procedure for communication over
decentralized networks.
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Communication procedure

Suppose we transmit Y via (I−W)Y, the compression estimator is
generated from the following procedure.

Compressed communication procedure (COMM):

Qk = Q(Yk −Hk) ▷ Compression

Ŷk = Hk +Qk

Ŷk
w = Hk

w +WQk ▷ Communication

Hk+1 = (1− α)Hk + αŶk

Hk+1
w = (1− α)Hk

w + αŶk
w

The estimator Ŷ − Ŷw = (I−W)Ŷ is unbiased and used in algorithm
instead.
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Smooth case: LEAD

Algorithm LEAD

Input: Stepsize η, parameter (α, γ), X0, H1, D1 = (I−W)Z for any Z
Output: XK or 1/n

∑n
i=1X

K
i

1: H1
w = WH1

2: X1 = X0 − η∇F(X0; ξ0)
3: for k = 1, 2, · · · ,K − 1 do
4: Yk = Xk − η∇F(Xk ; ξk)− ηDk

5: Ŷk , Ŷk
w ,H

k+1,Hk+1
w = COMM (Yk ,Hk ,Hk

w )
6: Dk+1 = Dk + γ

2η (Ŷ
k − Ŷk

w )

7: Xk+1 = Xk − η∇F(Xk ; ξk)− ηDk+1

8: end for
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Smooth case: LEAD

Each fi is L-smooth and µ-strongly convex. κf = L
µ , κg = λmax(I−W)

λmin(I−W) .

Theorem (Complexity with full gradient)

Taking the fixed stepsize, LEAD converges to the ϵ-accurate solution
with the iteration complexity

O
((

(1 + C )(κf + κg ) + Cκf κg
)
log

1

ϵ

)
.

When C = 0 (i.e., no compression) or C ≤ κf +κg

κf κg+κf +κg
, the iteration

complexity O
(
(κf + κg ) log

1
ϵ

)
recovers the convergence rate of

NIDS [LSY19].

Furthermore, when the network is fully connected, i.e., κg = 1, the

complexity O
(
κf log

1
ϵ

)
recovers the complexity of gradient

descent [Nes13].
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General case: Prox-LEAD

The general min-max problem with regularizer,

min
X∈Rn×p

max
S∈Rn×p

F(X) + ⟨B
1
2X,S⟩+ R(X). (5)

We adapt inexact PDHG with an additional proximal gradient step to
have

Xk+1 = Xk − η∇F(Xk)− ηDk ,

Dk+1 = Dk +
λ

2
(I−W)Xk+1,

Vk+1 = Xk − η∇F(Xk)− ηDk+1 =
(
I− ηλ

2
(I−W)

)
Xk+1,

Xk+1 = proxηR(V
k+1).

(6)

Prox-LEAD [LLT+21] is derived by compressing the communication.
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General case: Prox-LEAD

Algorithm Prox-LEAD

Input: Stepsize η, parameter (α, γ), initial X0,H1,D1 = 0
Output: XK or 1/n

∑n
i=1X

K
i

1: H1
w = WH1

2: Z1 = X0 − η∇F(X0, ξ0)
3: X1 = proxηR(Z

1)
4: for k = 1, 2, · · · ,K − 1 do
5: Gk=SGO(Xk)
6: Zk+1 = Xk − ηGk − ηDk

7: Ẑk+1, Ẑk+1
w ,Hk+1,Hk+1

w = COMM (Zk+1,Hk ,Hk
w )

8: Dk+1 = Dk + γ
2η (Ẑ

k+1 − Ẑk+1
W )

9: Vk+1 = Zk+1 − γ
2 (Ẑ

k+1 − Ẑk+1
W )

10: Xk+1 = proxηR
(
Vk+1

)
11: end for
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Convergence of Prox-LEAD

Theorem (Complexity with full gradient)

Under the same assumptions as LEAD, Prox-LEAD converges to the
ϵ-accurate solution with the iteration complexity

O
((

(1 + C )(κf + κg ) +
√
C (1 + C )κf κg

)
log

1

ϵ

)
.

For stochastic gradient, we consider two different settings.

The general stochastic setting:

fi (xi ) = Eξi∼Di
fi (xi , ξi ).

The finite-sum setting:

fi (xi ) =
1

m

m∑
j=1

fij(xi ).

Prox-LEAD is compatible with variance reduction schemes in finite
sum setting.
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Convergence of Prox-LEAD

In the general stochastic setting, we assume each fi is L-smooth in
expectation and µ-strongly convex.

The local stochastic gradient satisfies

E∇fi (xi , ξi ) = ∇fi (xi ). ▷ unbiasedness
E∥∇fi (x

∗, ξi )−∇fi (x
∗)∥2 ≤ σ2. ▷ bounded local variance

Theorem (Convergence rate)

Taking the fixed stepsize, the sequence {Xk} generated by
Prox-LEAD satisfies

E∥Xk − X∗∥2 ≤ (1− ρ)kM +O(σ2)

where M > 0 and ρ =(
max

{
48
√
C (1 + C )κf κg , 12(1 + C )κf ,

282κf
23 , 48(1 + C )κg

})−1
.
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Convergence of Prox-LEAD

Theorem (Complexity with diminishing stepsize)

Taking diminishing stepsizes, α, γ, η = O(1/k), Prox-LEAD converges
to the ϵ-accurate solution with the iteration complexity

O
((

(1 + C )2κf κg +
σ2

L2
(1 + C )4κ2f κ

2
g

)1
ϵ

)
.

Prox-LEAD can be accelerated to have global linear convergence with
the fixed stepsize by variance reduction schemes if the problem is
finite-sum.

e.g., Loopless-SVRG [KHR20] and SAGA [DBLJ14]
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Convergence of Prox-LEAD

In finite sum setting, we assume each local objective function on
minibatch fij is L-smooth and µ-strongly convex.

Theorem (Convergence complexity of Prox-LEAD SAGA)

Taking the fixed stepsizes, Prox-LEAD SAGA converges to the
ϵ-accurate solution with the iteration complexity

O
(
(1 + C )(κf + κg ) +

√
C (1 + C )κf κg +m) log

1

ϵ

)
.

When C = 0, the complexity is reduced to O
(
(κf + κg +m) log 1

ϵ

)
.

Furthermore, when κg = 1, the complexity O
(
(κf +m) log 1

ϵ

)
recovers the complexity of SAGA.
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Experiment: logistic regression
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Experiment: logistic regression
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Experiment: logistic regression
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Experiment: logistic regression
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Take-home message

1. Prox-LEAD is the first primal-dual stochastic algorithm with
compressed communication for decentralized composite optimization
and achieves linear convergence with full gradient.

2. Prox-LEAD can be combined with Loopless-SVRG and SAGA to
achieve exact linear convergence for finite-sum function.

3. Prox-LEAD doesn’t require bounded assumption on data
heterogeneity. Prox-LEAD is robust to parameter tuning.

4. The communication compression procedure, COMM, and the
unbiased compression operator can be applied to other decentralized
algorithms to achieve efficient communication.
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Thank You!
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